Request for Bids – OHPA

Install Trelleborg Fender System

Addendum

Question 1

Section II - Submission of Proposal Please provide the date the last question is allowed to be submitted at 3:00 PM EST

Answer

February 14, 2025, no later than 3:00 PM EST.

Question 2

Section V – 3 Vs 2 – Instructions Please confirm which cost breakdown is required. 1. Civil, Mechanical and Install of Fenders 2. Administration Overhead, Equipment Design, Equipment Fab, and Installation Support

Answer

Both

QUESTION 3

4 - Primary Scope Please confirm if the contractor is furnishing and delivering the three Trelleborg Fender Systems

ANSWER

• Furnish and deliver three (3) Trelleborg Fender Systems to the Port of Fernandina. Please note all freight cost associated with procurement and delivery are the contractor's responsibility.

QUESTION 4

ANSWER

Attached: Trelleborg Fender Drawings

QUESTION 5

ANSWER

All anchors shall be replaced in accordance to attached Trelleborg Fender Drawings. Attached

Question 6

4 - Primary Scope

Will a crane be allowed on the wharf to perform the work or does the work have to be completed by barge? Please provide the loading capacity of the current dock and what size crane is allowed on the wharf.

ANSWER

Mobile crane is allowed on the wharf.

QUESTION 7

 4 - Primary Scope
 Please confirm if there is working space on the dock designated for the installation of the fender system and laydown area. If so, please provide the SF area of the designated space.

ANSWER

The wharf is in full operation, but required working space will be allotted for each fender as it is being replaced. Onsite laydown area will be supplied, may not be on the wharf.

QUESTION 8 4 - Primary Scope Please confirm who is responsible for the anchor design for the fenders.

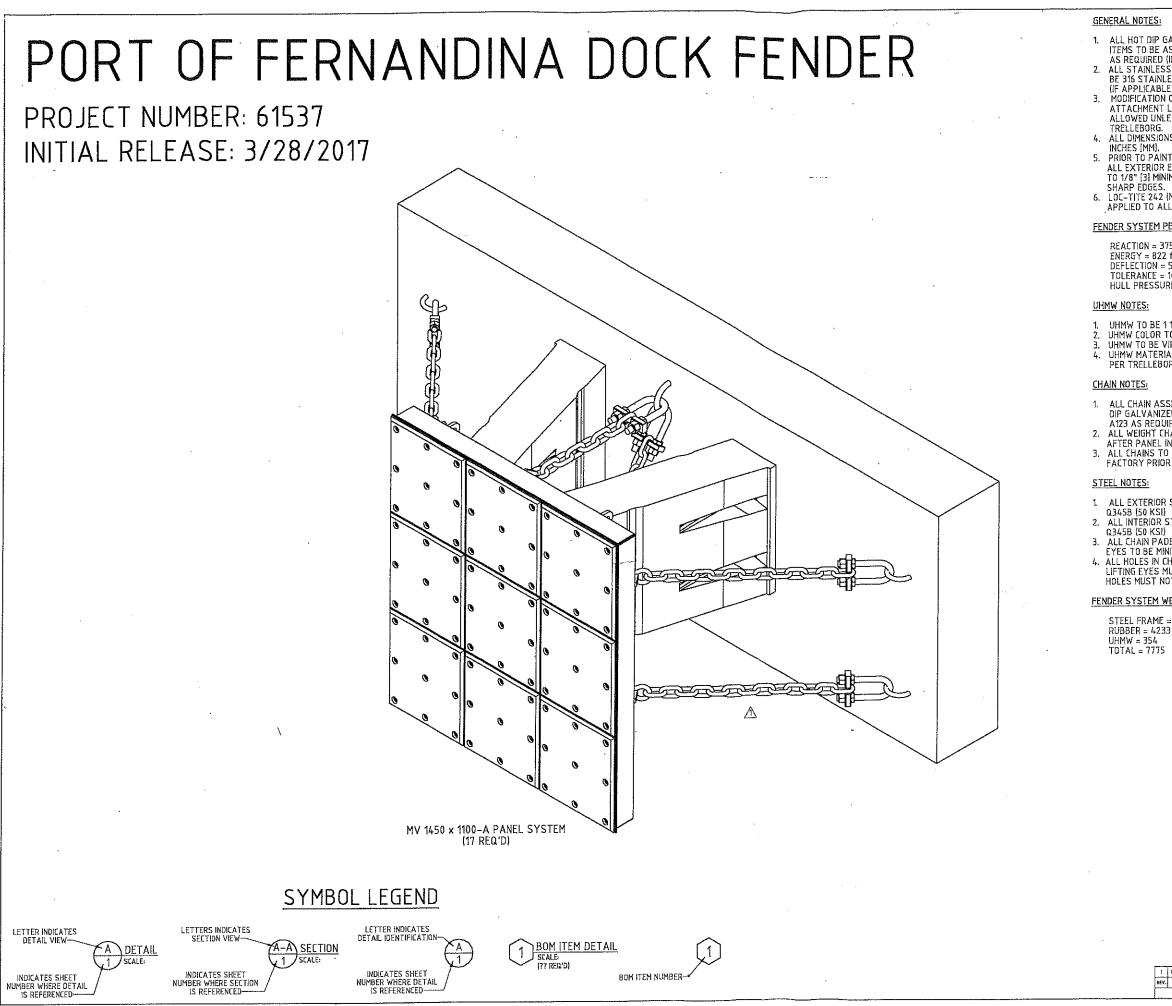
ANSWER

• Assemble and install new Trelleborg Fender Systems according to OEM manual.

QUESTION 9

General Please provide any technical specifications that are required for the project.

ANSWER


Attached: Trelleborg Technical Design Package

QUESTION 10

General Please confirm if the project has any Buy America or Buy American requirements.

ANSWER

NA

- ALL HOT DIP GALVANIZED (HDG) ITEMS TO BE AS PER A153 OR A123 AS REQUIRED (IF APPLICABLE). ALL STAINLESS STEEL ITEMS TO BE 316 STAINLESS STEEL, U.N.O.
- (IF APPLICABLE). 3. MODIFICATION OF DOCK SIDE
 - ATTACHMENT LOCATIONS NOT ALLOWED UNLESS AUTHORIZED BY
- 4. ALL DIMENSIONS ARE IN FEET AND
- 5. PRIOR TO PAINTING OR GALVANIZING, ALL EXTERIOR EDGES TO BE GROUND TO 1/8" [3] MINIMUM RADIUS TO AVOID
- SHARP EDGES. 6. LOC-TITE 242 (MED. STRENGTH) TO BE APPLIED TO ALL HARDWARE.

FENDER SYSTEM PERFORMANCE:

REACTION = 375 kips [1169 kN] ENERGY = 822 ft-kips [1113 kN-m] DEFLECTION = 57.5% TOLERANCE = 10% HULL PRESSURE = 6.12 ksf

UHMW TO BE 11/4 [32] THICK. UHMW COLOR TO BE GREEN. UHMW TO BE VIRGIN MAT. UHMW MATERIAL PROPERTIES AS PER TRELLEBORG STANDARDS.

- ALL CHAIN ASSEMBLIES TO BE HOT DIP GALVANIZED (HDG) AS PER ASTM A123 AS REQUIRED. 2. ALL WEIGHT CHAINS MUST BE TAUT
- AFTER PANEL INSTALLATION. 3. ALL CHAINS TO PRE-ASSEMBLED AT
 - FACTORY PRIOR TO SHIPMENT.

- 1. ALL EXTERIOR STEEL TO BE MINIMUM 2. ALL INTERIOR STEEL TO BE MINIMUM
- Q345B (50 KSI) 3. ALL CHAIN PADEYES AND LIFTING
- EYES TO BE MINIMUM 50 KSI.
- 4. ALL HOLES IN CHAIN PADEYES AND LIFTING EYES MUST BE DRILLED. THESE
- HOLES MUST NOT BE FLAME CUT

FENDER SYSTEM WEIGHTS (ibs.)

STEEL FRAME = 3188

1 REV.

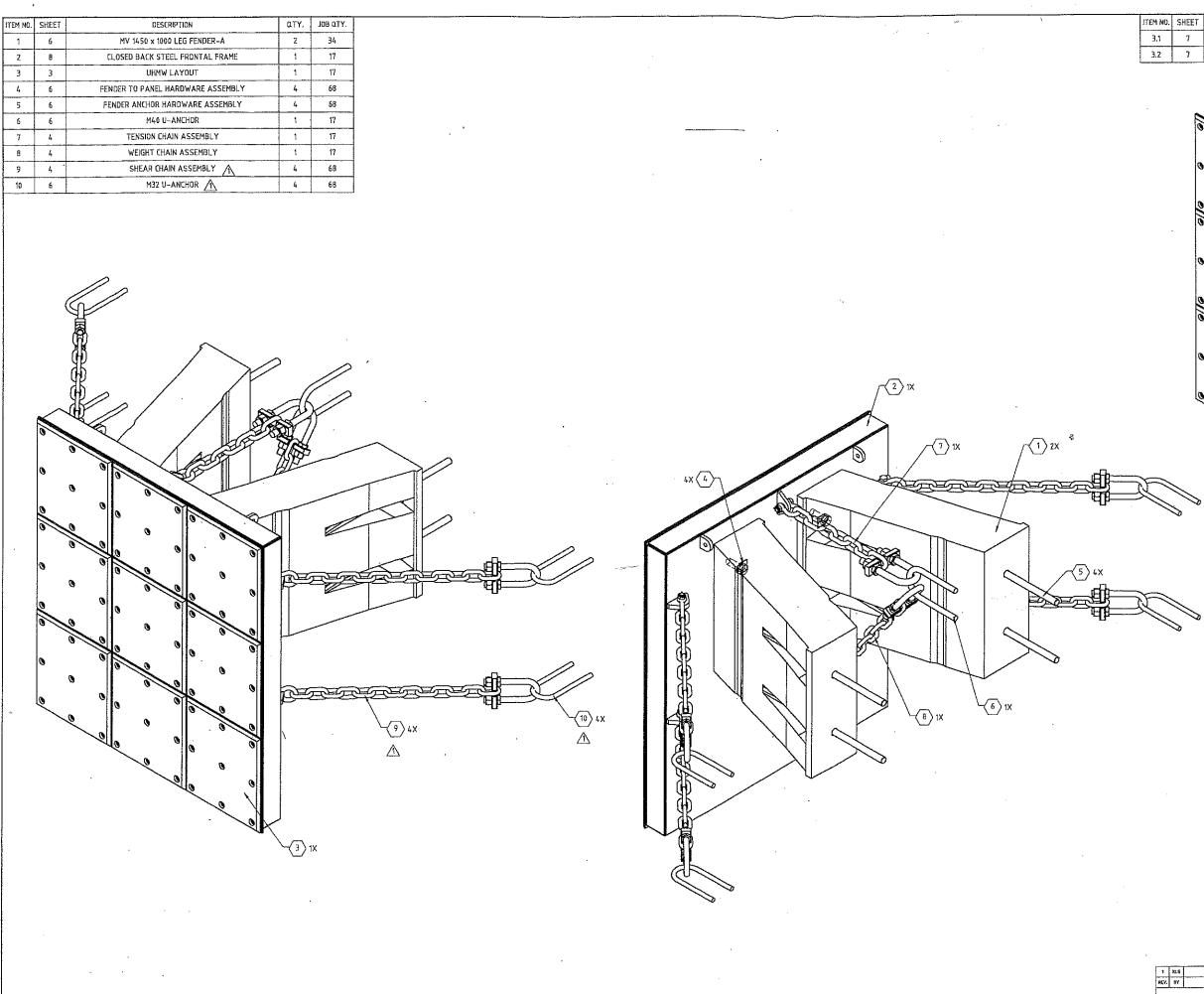
WELDING NOTES:

2.

- 1. ALL WELDING TO BE AS PER AWS D1.1. ALL EXTERIOR WELDS TO BE WATER TIGHT. USE 70 KSI WELD METAL.
- ALL WELDS TO BE 1/4" [6] FILLET
- ALL AROUND UNLESS NOTED OTHERWISE. PANEL TO BE AIR TIGHT PRESSURE З. TESTED AS FOLLWS:
 - a. ALL VERTICAL AND HORIZONTAL WEB CAVITIES TO HAVE A 1/4" [6]
 - VENT HOLE. b. INSTALL 1/2" [12] PIPE NIPPLE ON BACK SIDE OF PANEL (BACK PLATE).
 - c. PRESSURE TEST INSIDE OF PANEL WITH 2-4 PSI OF AIR & SPRAY ALL EXTERIOR WELDS WITH SOAP AND WATER SOLUTION.
 - d. PRESSURE TO BE HELD FOR 10 MINUTES.
 - e. REPAIR ALL LEAKS.

TOLERANCES:

- 1. TOLERANCE ON CHAIN LINKS TO BE +5%/-2.5%. TOLERANCE ON DRILLED HOLE
- 2.
- LOCATIONS TO BE $\pm 1/8"$ [3]. TOLERANCE ON UHMW DIMENSIONS TO З. BE ±1/8" [3].
- TOLERANCE FOR LOCATION OF DOCK SIDE HARDWARE TO BE ±1/16" [2]. TOLERANCE ON GENERAL STEEL 4.
- 5 FABRICATION TO BE +1/4" [6].
- 6. PANEL SHOULD NOT BE OUT OF FLATNESS BY MORE THAN 1/4" [6] ON VERTICAL, 1/4" [6] ON HORIZONTAL AND 3/8" [10] ON DIAGONAL.


PAINT NOTES:

- 1. PANEL TO BE PAINTED AS PER THE FOLLOWING SPECIFICATIONS: a. BLAST SURFACES TO SSPC-SP10
 - NEAR WHITE BLAST
 - b. PRIMER COAT: 7.0-8.0 MILS OF CARBOGUARD 890.
 - c, INTERMEDIATE COAT: 7.0-8.0 MILS OF CARBOGUARD 890.
 - d, TOP COAT: 2.0-4.0 MILS OF
 - CARBOTHANE 134, e. TOTAL D.F.T. TO BE 16.0–20.0 MILS. f. COLOR TO BE BLACK.
- STRIPE COAT ALL EDGES & WELDS.
- NO SINGLE SPOT MEASUREMENT CAN BE 2. LESS THAN 80% OF THE SPECIFIED MINIMUM THICKNESS AND NO MORE THAN 120% OF THE SPECIFIED MAXIMUM THICKNESS.

FIT-UP NOTE:

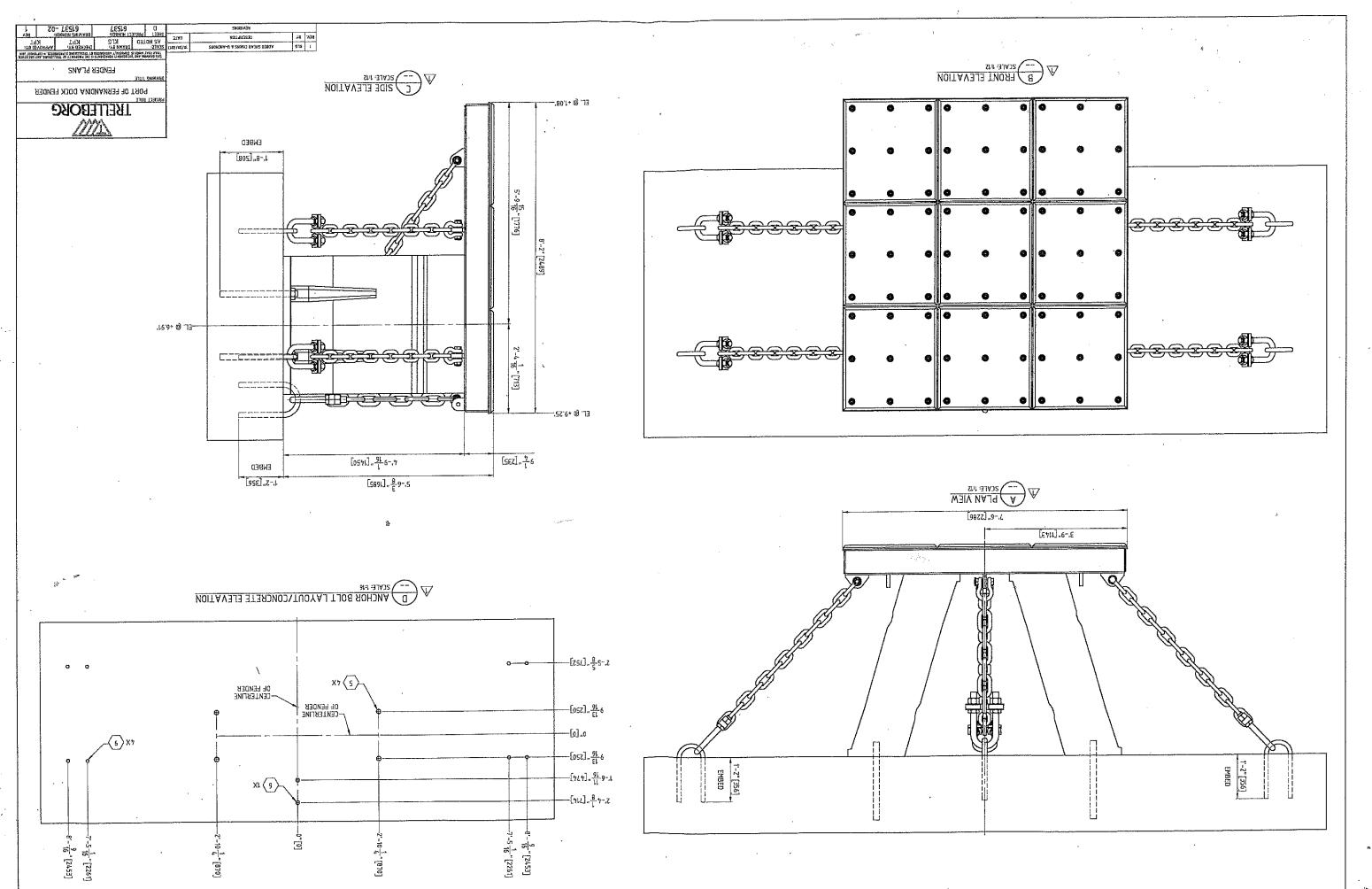
TO ENSURE PROPER FIT-UP AND PREVENT DAMAGE TO THE FENDER PANEL SYSTEM 1 COMPONENTS, REVIEW TRELLEBORG'S INSTALLATION PROCEDURES PRIOR TO INSTALLING THE SYSTEM IN THE FIELD.

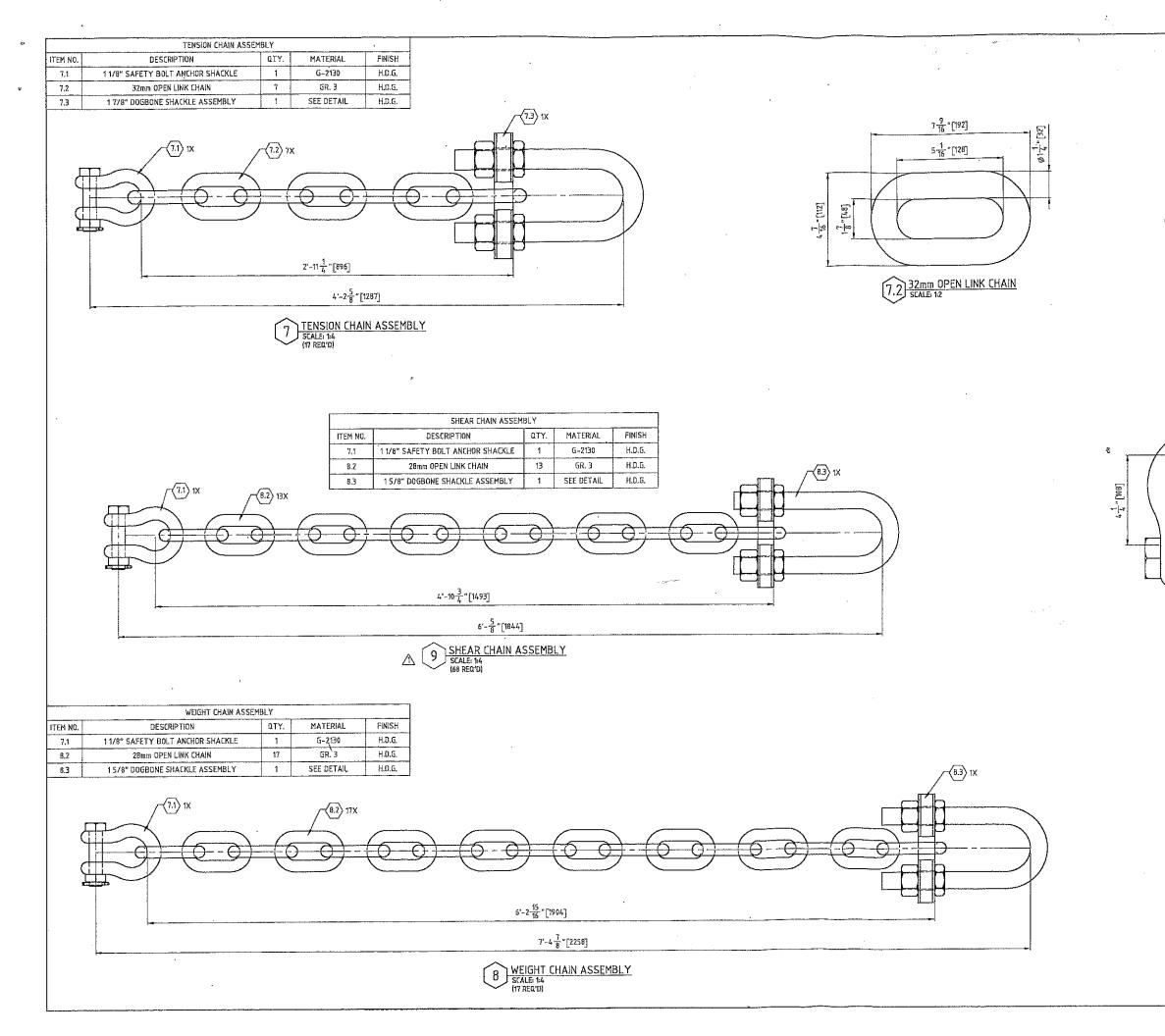
					TREL		 G	-
			PRDJECT		r of Ferna	NDINA DOCK	FENDE	R
			DRAWING	TITLE	דוד	E SHEET		
			THE DRAM	NEL AND T	INC DESIGN IT ALMEST S EXPRESSLY AUTHOR	NTS IS THE PROMERTY OF T	AD.(CHONG. AN INELIED, + COP	Y USE OTHER TREAT 2016
KLG	ADDED SHEAR CHAIRS & U-ANCRORS	10/30/2017	SCALE		DRAWN BY	CHECKED BY- KPT	APPROV	ED BY, PT
BY	DESCRIPTION	DATE	N.T.S		KLG CT NUHBER:	DRAWING NUHB		REV
	REVISIONS		D	() Had to	61537	61537		1 1

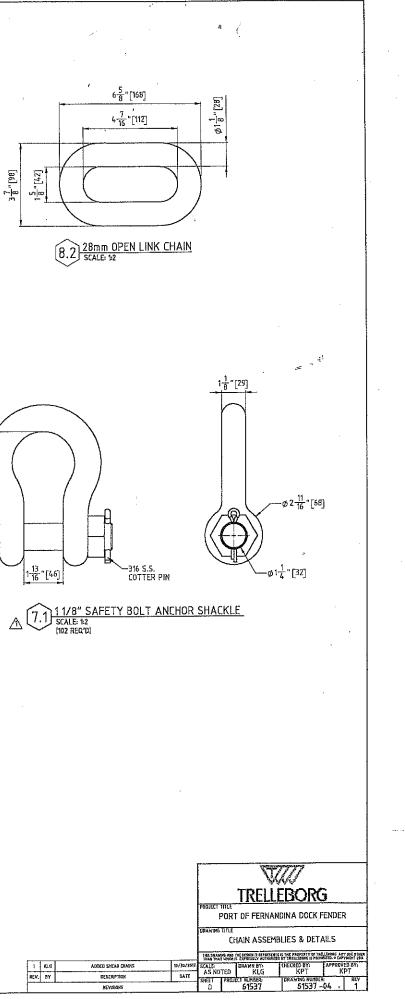
r

124

,


.


3,1 7		A 4 14 11 (303) 3		1.60.000			453
		1 1/4" [32] 1		· · · · · · · · · · · · · · · · · · ·		9	153
3.2 7	l	578* LOW P	PROFILE UH	MW NUT		81	1377
	:						
		÷					
	'			<i>i</i> .			
~		· ·					
0		1					
 ~							
	00		<u></u>	av			i
9		01		20			
9		0	1				
	0		0				
		0			122	81X	
		10		0		UIA	
	10		0				
	o l	9			1	•	
	```			×    •			
0		10	0	0	1		
	0		0	NI Č			
		0		10	ġ		
0		0	I				
0	10		0				
	in the			0	1		
		Se .	1	0	ী	1	
0	)	9	. 0.			1	
	0		1	0		्रो	
	9		0	210	0	1	
0	)	0	1	N.	l		
	10	ľ	•	10 16			
	Ň		0		6		
		20		0		1	
		~	•	0	-		
			~	0			
_					0		
				-lo			
110				0			
7		:			0		
					1	1	
						٦	
~							
$\sim$					•		
N							1
							1
							·
							`
							,
							,
				·			х — — — — — — — — — — — — — — — — — — —
				·			ς.
							х х
			Г				
			Γ		×777	<i>7</i>	
				TRFI	Attent	<i>7</i>	
				TREI	LEE	ORG	
				PORT OF FER	LEE	ORG	
				DECT TRILE PORT OF FERI		ORG	
			DRJ	DECT TITLE PORT OF FERI WING TITLE BILL	NANDIN.	A DOCK FI	ENDER
			DR.	DECT TITLE PORT OF FERI WING TITLE BILL 1	NANDIN.	ORG A DOCK FI ERIALS	ENDER
	ADDED SHEAR OVAINS &		DR.	DECT TITLE PORT OF FERI WING TITLE BILL I SATINATE AND IN EDUCATION OF ALL INTERNATIONAL INFORMATION INT.S. KLO	OF MAT	ORG A DOCK FI ERIALS	ENDER ENDER Aba, « Cornigation and Approved By: KPT


DESCRIPTION

OTY JOB OTY.

•





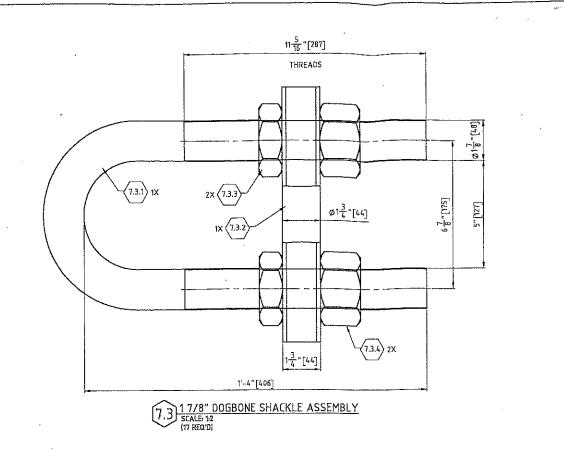


•

· · ·

1<del>9</del>"[40]

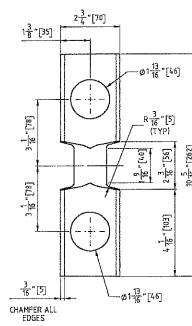
3 <mark>16</mark> " [87]

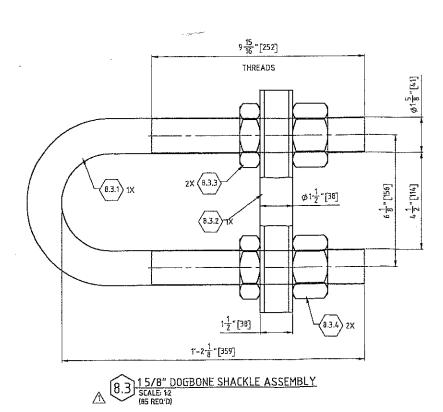

<u>3</u> "[5]

CHAMFER ALL EDGES

2

.


3-<u>1</u>"[79]



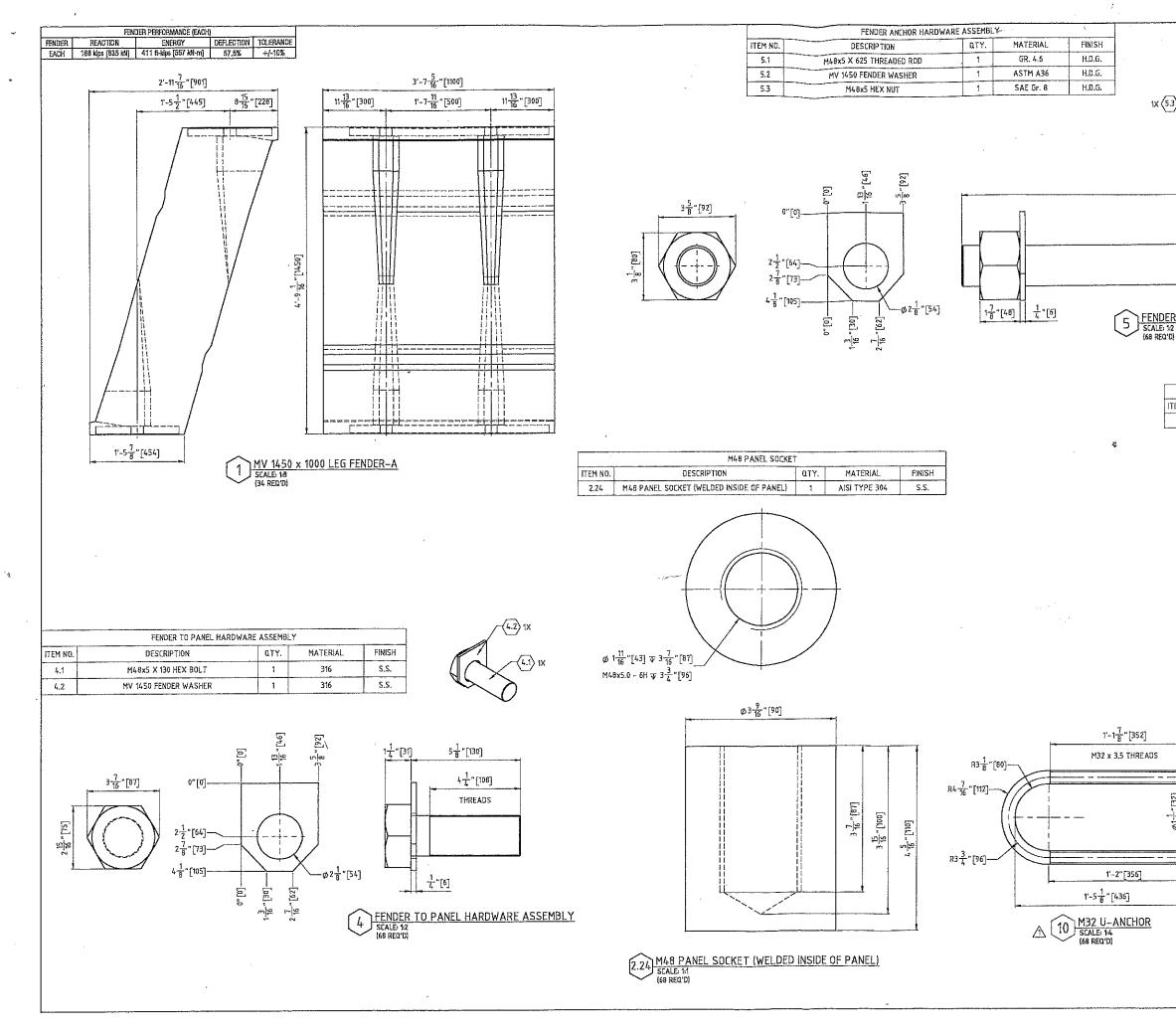

	17/8" DOGBONE SHACKLE	ASSEMBLY		
ITEM NO.	DESCRIPTION	QTY.	MATERIAL	FINISH
7.3.1	17/8"-5 UNC-2A U-BOLT	1	AISI 4140 HR	H.D.G.
7.3.2	1 7/8" DOGBONE SHACKLE CROSS BAR	1	gr. 50 minimum	H.D.G.
7.3.3	1 778"-5 UNC-2B HEAVY HEX JAM NUT	2	ASTM A563 DH	H.D.G.
7.3.4	1 7/8"-5 UNC-2B HEAVY HEX NUT	2	ASTM A563 DH	H.D.G.

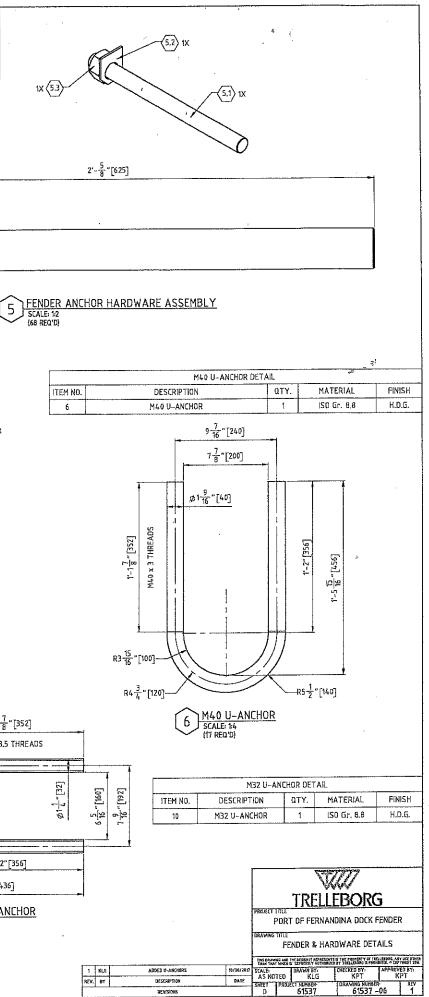
러

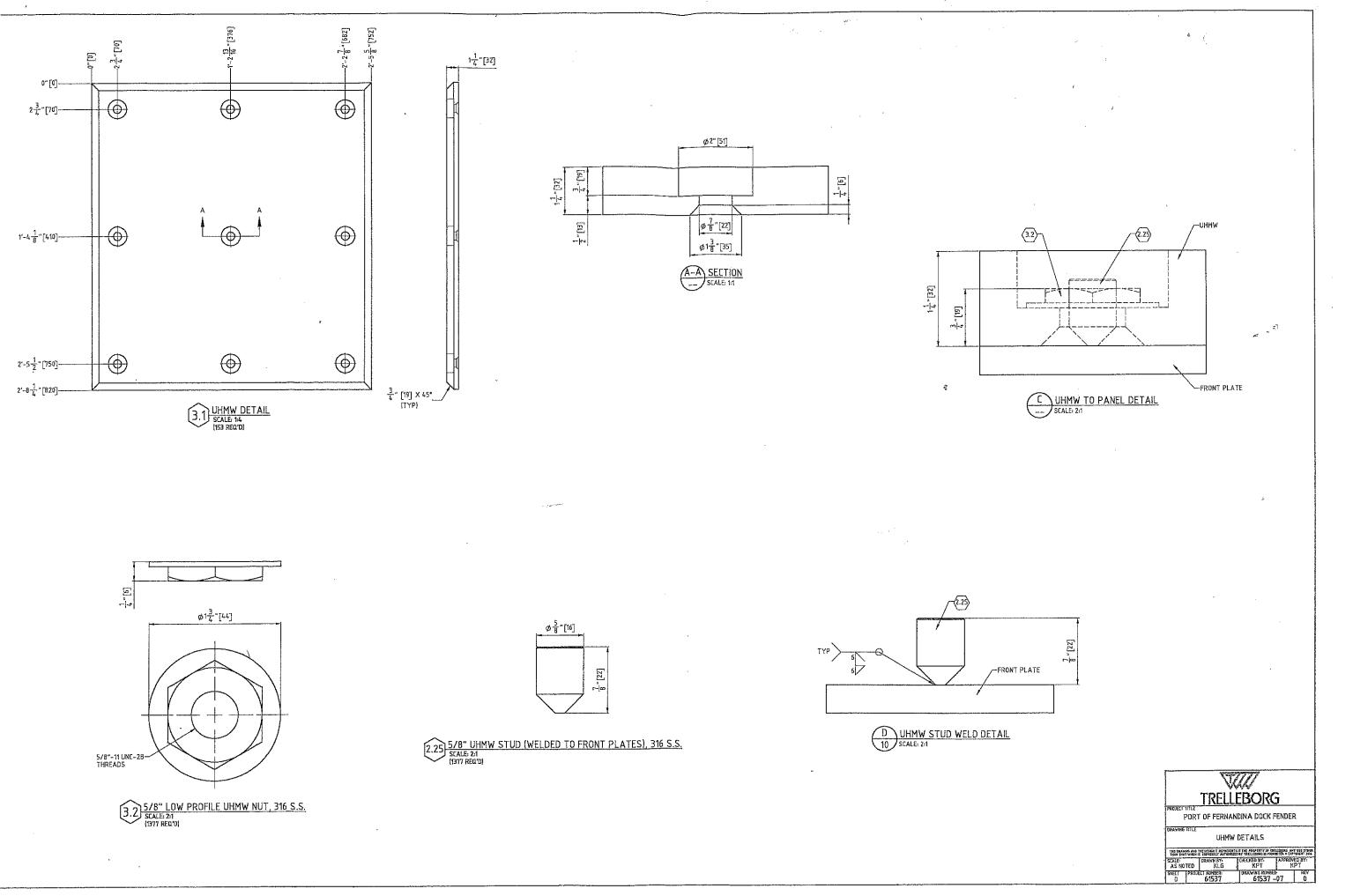
η.






.


	1 5/8" DOGBONE SHACKLE	ASSEMBLY		
ITEM NO.	DESCRIPTION	QTY.	MATERIAL	FINISH
8.3.1	1 5/8"5 1/2 UNC2A U-BOLT	1	AISI 4140 HR	H.D.G.
8.3.2	1 5/8" DOGBONE SHACKLE CROSS BAR	1	gr. 50 minimum	H.D.G.
8,3.3	1 5/8"-8 UNC-28 JAM NUT	2	ASTM A563 DH	H.D.G.
8,3,4	1 5/8"-8 UNC-2B HEAVY HEX NUT	2	ASTM A563 DH	H.D.G.


······				<u></u>	i
. · ·		e.	·	<b>&amp;</b>	
	F	,			
φ2 ¹ / ₈ "[5	54]	,			
R-3/16"[9 (TYP)	9				
┛/	т				
$\frac{1}{16}$ [[49]	11 <mark>13</mark> " [300]				
	=				
4 ⁵ / ₈ [117]					
					·
-ø2 <del>1</del> 7"[54]					e - ^م ا
		,			
"[46]					
					1 - - - - - - - - - - - - - - - - - - -
"[5] 'P}					
2 <u>16</u> "[56] 10 <u>15</u> "[262]					
10 ⁵					
(E01)" 11 4					
+ <del>12</del>					
<b>i</b> i					
I				<u>V</u>	W
				FROJECT TITLE PORT OF FERNAN	EBORG
				DRAWING TITLE DOGBONE SH	ACKLE DETAILS
	1 XLG REV. BY	ADDED 15/3" DOGBONE SHACKLES Description	10/30/2017 DATE	THIS DRAWKG AND THE DESCRIPT ROPESCHT THAN THAT MHORE LOPRESAL AUTORNESS SCALE: AS NOTED RAWF BY: SHEET PROJECT NUMBER:	SIG THE PADPENTY OF TRUCKING ANY USE OTHER DBY TRULLEDGY OF PADEBILD & DDYTRONT 1005 [CHECKED 87: KPT KPT [DRAWING NUMBER: REV
		REVISIONS	••••••	SHEET PROJECT NUMBER: 11 61537	DRAWING NUMBER 61537 -05 1

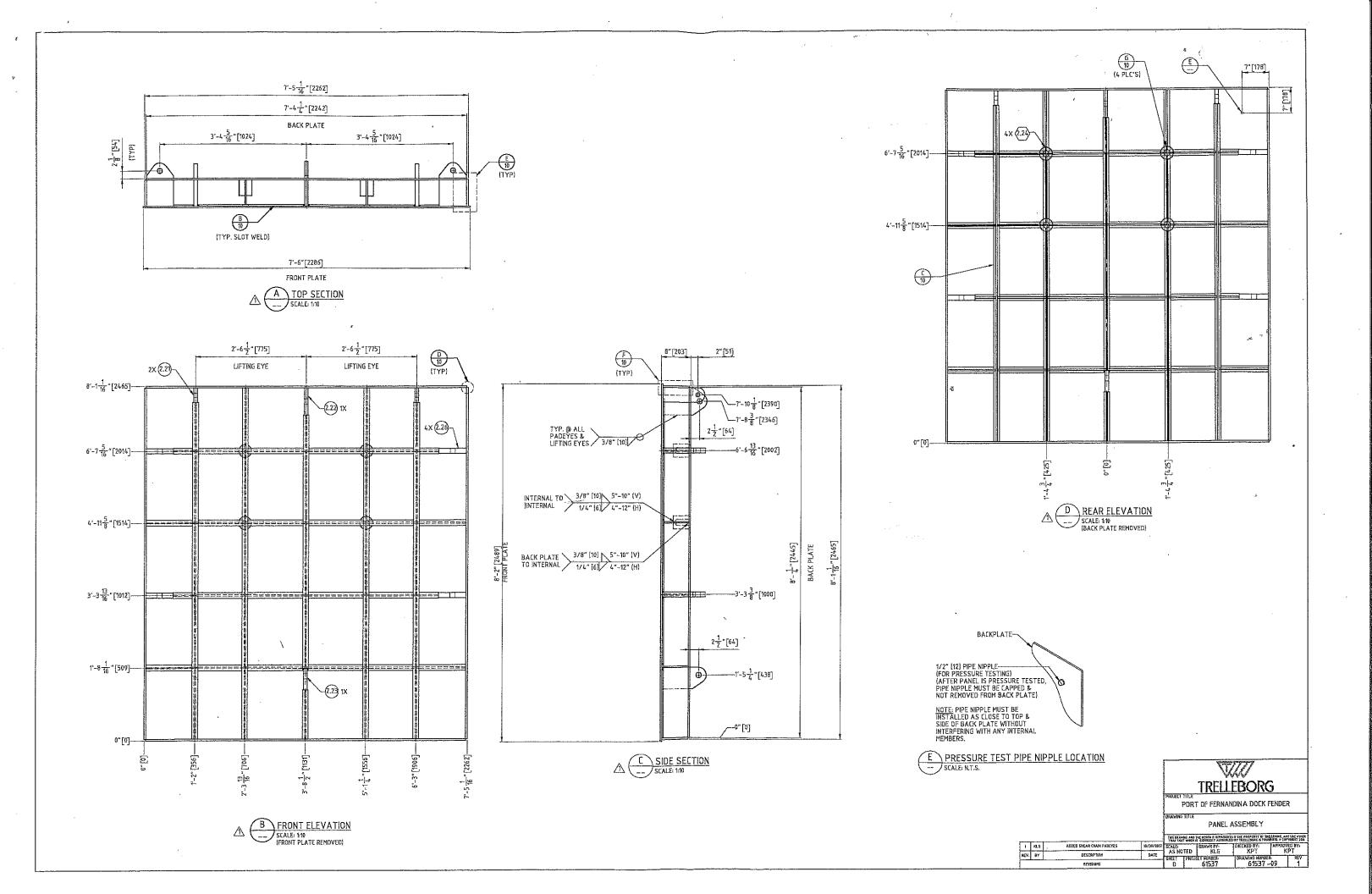
.

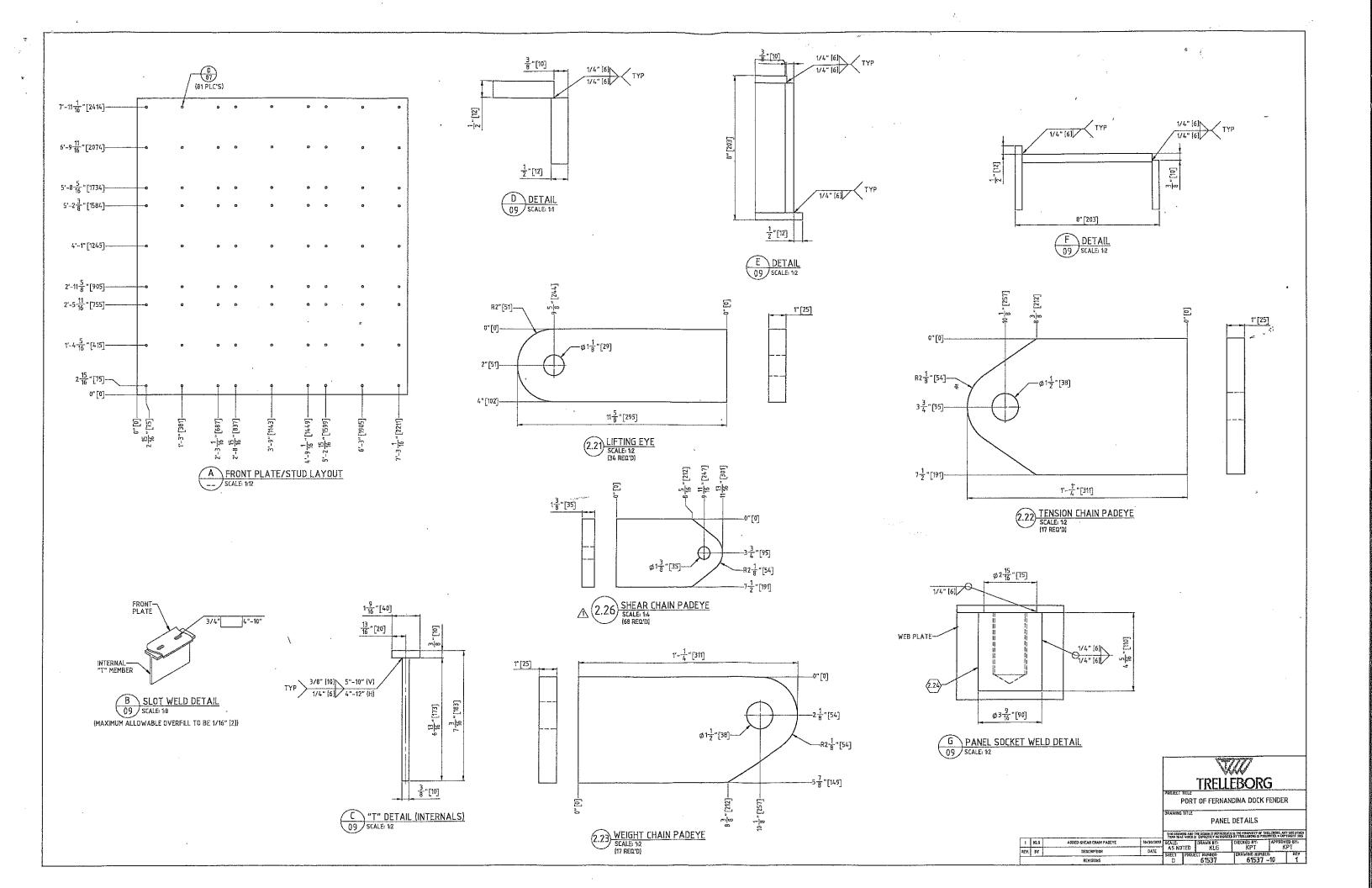
•








4.




	PANEL ASSEMBLY			
EM NO,	DESCRIPTION	MATERIAL	WEIGHT	αTY.
2.1	1/2" [12] THICK PLATE	Q345 [50 KSI]	93	2
2.2	1/2" [12] THICK PLATE	Q345 [50 KSI]	85	2
2.3	3/8" [10] THICK PLATE	0345 (50 KSI)	985	1
2.4	3/8" [10] THICK PLATE	Q345 [50 KSI]	939	1
2.5	3/8" [10] THICK PLATE	0345 [50 KSI]	70	2
2.6	3/8" [10] THICK PLATE	0345 [50 KSI]	70	2
2.7	3/8" [10] THICK PLATE	Q345 [50 KSI]	53	1
2.8	3/8" [10] THICK PLATE	Q345 [50 KSI]	17	2
2.9	3/8" (10) THICK PLATE	Q345 [50 KSI]	16	2
2.10	3/8" [10] THICK PLATE	Q345 [50 KSI]	12	4
2.11	3/8" [10] THICK PLATE	Q345 [50 KS1]	12	4
2.12	3/8" (10) THICK PLATE	Q345 (50 KSI)	12	1
2.19	378" [10] THICK PLATE	Q345 [50 KS()	10	4
2.14	3/8" (10) THICK PLATE	Q345 [50 KSI]	10	1
2.15	3/6" [10] THICK PLATE	Q345 (50 KSI)	10	4
2.16	3/8" [10] THICK PLATE	Q345 [50 KSI]	9	4
2.17	3/8" [10] THICK PLATE	Q345 [50 KSI]	Е	8
2.18	378" (10) THICK PLATE	Q345 (50 KSI)	2	4
2.19	3/8" (10) THICK PLATE	Q345 (50 KSI)	2	8
2.20	3/8" [10] THICK PLATE	Q345 (50 KSI)	2	1
2.21	1" [25] THICK PLATE (LIFTING EYE)	Q345 (50 KSI)	12	2
2.22	1" [25] THICK PLATE (TENSION CHAIN PADEYE)	Q345 (50 KSI)	22	1
2.23	1" [25] THICK PLATE (WEIGHT CHAIN PADEYE)	0345 (50 KSI)	18,	1
2.24	3/8" [10] THICK PLATE	Q345 (50 KSI)	- Ì	4
2.25	3/8" [10] THICK PLATE	Q345 [50 KSI]	4	5
2.26	1 378" [35] THICK PLATE (SHEAR CHAIN PADEYE)	Q345 [50 KSI]	30	4

			TREL		G
		PROJECT TITLE	r of ferna	NDINA DOCK	FENDER
		DRAWING TITLE	PANEL	ASSEMBLY	
		THIS BRAWNG AND THAS BRAWNG AND THAS THAT THAT THAT	INT DESIGN IT REPAILSE	TS IS THE PROPERTY OF	INFLEEDING ANY USE DINER
ADE YES	10/30/2017	SCALE:	DRAWN BY:	CHECKED BY:	APPROVED BY

				THIS BRAW	NG AND 1 WHICE	NE DESIGN IT REPARTS HATS	IS THE PROPERTY OF THE	LEBORD ANY	USE DENER Right 2016
1	X1,6	ADDED SHEAR CHAIN PADEYES	10/30/2017	SCALE		DRAWN BY:	CHECKED BY: KPT	APPROVE	
REV.	BY	DESCRIPTION	DATE	AS NO	IEU IPROX	KLG CI NUMBER	I ORAWING NUMBER		REV
		REVISIONS		D	-	61537	61537 -	08	1







'a '4

### **Technical Design Package**

Project No.:		61537				
Project Name:		Port of Fernandina Dock Fender				
Submission Date:		Wednesday, March 29, 2017				
Revision:		0				
Prepared by:		Kurt Trahan				
		Name, Title				
Reviewed by:						
Reviewed by.		Name, Title				
This packet includes calculations or technical info drawings, which includes the following componer		ation verifying design of components detailed i	n the supporting technical			
Fender Performance	•	Tension Chains				
Steel Panel Design	2	Weight Chains				
UHMW-PE	<b>1</b>	Uplift/Surge Chains	Г			
Coating	Γ	Shear Chains	Γ.			
Hardware	Γ	Anchorage	Γ.			

Please review the contents of this packet, sign if applicable, and return to TMS representative. By signing below, you are authorized Maritime to continue with manufacturing of goods as detailed in the submitted drawings. If 'approved as noted' please note all necessary deviations on drawings or calculations.

Approved by:

Signature

Print Name, Title

# **Performance Curve**

### **Fenders**

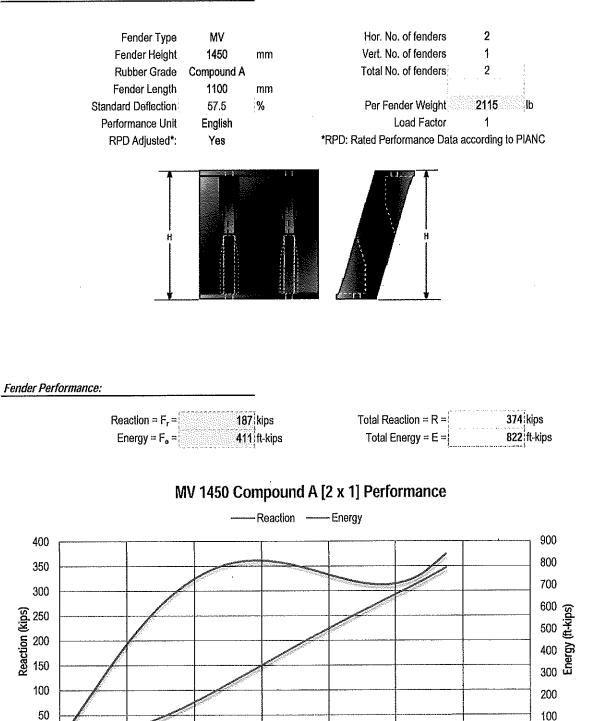
### Project Information:

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### Fender Details:

0

0


20

10

30

40

50



TRELLEBORG

0

70

60

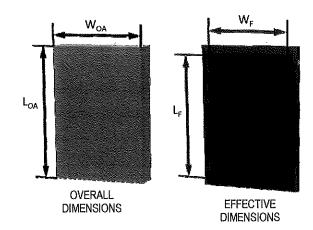


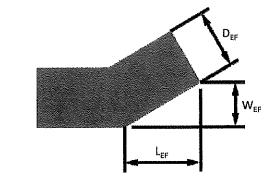
### Project Information

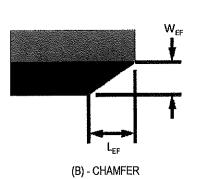
ì

• ;

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:


### Panel Dimensional Layout

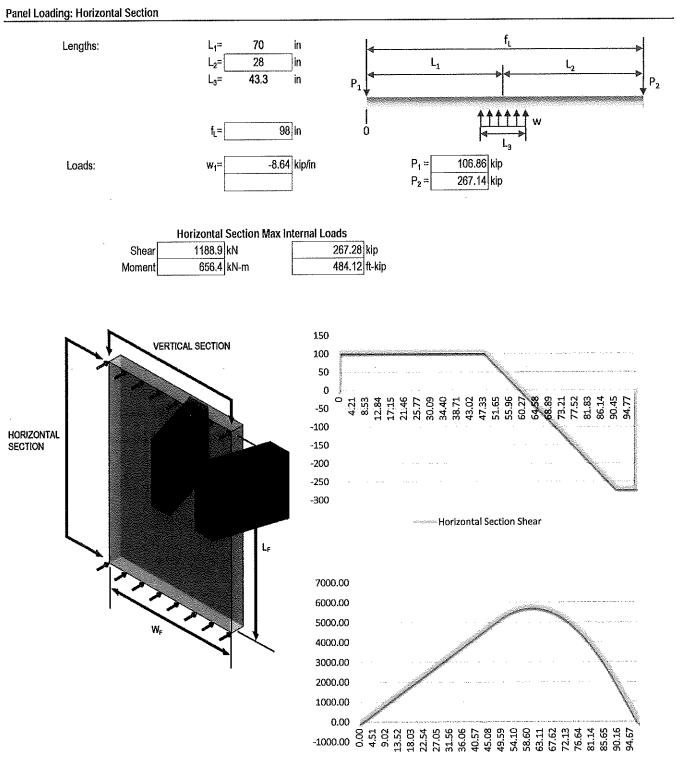

<b>Overall Panel Width:</b>	W _{OA} =	90.00	in =	7.50	ft	
Overall Panel Length:	L _{OA} =	98.00	in =	8.17	ft	


Panel Edge Ef	fects	EDGE EFFECT DIMENSIONS						
Edge	Туре	Length (L _{EF} )	Width ( $W_{EF}$ )	Depth (D EF)				
Тор	(A) - None	in	in	in				
Bottom	(A) - None	in	in	in				
Left	(A) - None	in	່າຄ	in				
Right	(A) - None	in	in	in				

### Panel Dimensions Adjusted for Edge Effects:

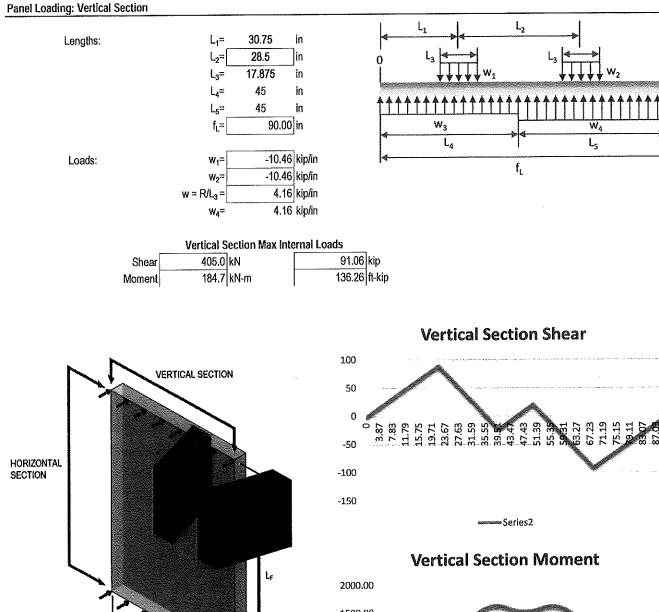
Flat Width	•	W _{OA} - ΣW _{EF} =	90.00	in
Flat Length	L _F =	L _{OA} - ΣL _{EF} =	98.00	lin
		-		
Panel Effective Area:		_		
	A _E =	W _F * L _F ≍	61.25	ft²
Hull Pressure:				
	P _h =	R/A₀=	6.11	ksf
		L		
Panel Exterior Plates:				
	Front Plate:	t _f =	0.394	in
	Back Plate:	t _b =	0.394	in
	Side Plates:	t _s =	0.472	in

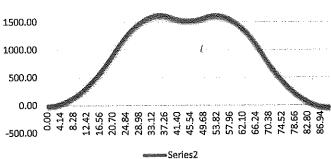










÷ ŧ






Horizontal Section Moment







\$

3



		Internal Type:	Fabricate	ed T Shape			4	h _w h _t
		T Orientation:	Normal				$\frac{4}{1-1}$	
anel Depth		D _p =	8	in			I I	1
		1	'ype 1		Гуре 2		D	w _h
lead		h _t =	0.394	in	.315	ín		
lead Width		nt− h _w =	0.334 1.575	in	1.575	in		
Veb			0.394	in	.315	ín		
			6.818	-		97 in	t,	W _t
Veb Height	W _h =	·		- +			~	
ee Area	~	$A_{T}=$	2.84			27 in		·
C of G	C _g =		3.61			61 in		
Aoment of Inertia	l=	= Σ( ¹ / ₁₂ )bh³+Ad²=	12.32	jin⁴ [	9,6	85 in⁴		
spacing:		Internal Quantity: Internal Quantity:	5 4		0			
lased upon stated o	limensionsand	edge effects		•				
		-						
		· ·		Vertical Spacir	a of Horizon	tal Men	bers	
Horizontal Sp	acing of Vertica	I Members		Vertical Spacir Panel Height	-		bers	
Horizontal Spa Panel Width	acing of Vertica 90.00	l Members in		Panel Height	98.00	in	bers	
Horizontal Spa Panel Width Left Edge	acing of Vertica 90.00 0	l Members in in	·	Panel Height Top Edge	98.00 0	in in	bers	
Horizontal Spa Panel Width Left Edge Right Edge	acing of Vertica 90.00 0 0	l Members in in in		Panel Height Top Edge Bottom Edge	98.00 0 0	in in in	bers	
Horizontal Spa Panel Width Left Edge	acing of Vertica 90.00 0 0 0.5	l Members in in		Panel Height Top Edge	98.00 0	in in	bers	
Horizontal Sp Panel Width Left Edge Right Edge Stand Off Effective W	acing of Vertica 90.00 0 0 0.5 90.00	I Members in in in in		Panel Height Top Edge Bottom Edge Stand off	98.00 0 0.5 98.00	in in in in		
Horizontal Sp Panel Width Left Edge Right Edge Stand Off	acing of Vertica 90.00 0 0.5 90.00	I Members in in in in		Panel Height Top Edge Bottom Edge Stand off Effective H	98.00 0 0.5 98.00	in in in in		
Horizontal Spa Panel Width Left Edge Right Edge Stand Off Effective W	acing of Vertica 90.00 0 0.5 90.00 n 5 vertical Inter 15.00	I Members in in in in mals: in		Panel Height Top Edge Bottom Edge Stand off Effective H Spacing based up	98.00 0 0.5 98.00	in in in in in		
Horizontal Sp Panel Width Left Edge Right Edge Stand Off Effective W Spacing based upor S _h = H _{eff} / q _v =	acing of Vertica 90.00 0 0,5 90.00 5 vertical Inter 15.00 ::	I Members in in in in mals: in		Panel Height Top Edge Bottom Edge Stand off Effective H Spacing based up S _v = H _{eff} / q _h =	98.00 0 0.5 98.00 ion 4 horizon 19.60	in in in in in		
Horizontal Sp Panel Width Left Edge Right Edge Stand Off Effective W Spacing based upor S _h = H _{eff} / q _v =	acing of Vertica 90.00 0 0,5 90.00 5 vertical Inter 15.00 5: External Memi	I Members in in in in mals: in bers: ASTM #	•	Panel Height Top Edge Bottom Edge Stand off Effective H Spacing based up	98.00 0 0.5 98.00 ion 4 horizon 19.60	in in in in in		
Horizontal Sp Panel Width Left Edge Right Edge Stand Off Effective W Spacing based upor S _h = H _{eff} / q _v =	acing of Vertica 90.00 0 0,5 90.00 5 vertical Inter 15.00 ::	I Members in in in in mals: in bers: 50	1572 Gr.50 (or si 1/Pa	Panel Height Top Edge Bottom Edge Stand off Effective H Spacing based up S _v = H _{eff} / q _h =	98.00 0 0.5 98.00 ion 4 horizon 19.60	in in in in in		
Horizontal Sp Panel Width Left Edge Right Edge Stand Off Effective W Spacing based upor S _h = H _{eff} / q _v =	acing of Vertica 90.00 0 0,5 90.00 5 vertical Inter 15.00 5: External Memi	I Members in in in in mals: in bers: <u>ASTM /</u> <u>50</u>	si	Panel Height Top Edge Bottom Edge Stand off Effective H Spacing based up S _v = H _{eff} / q _h =	98.00 0 0.5 98.00 ion 4 horizon 19.60	in in in in in		·

Yield Strength 50 ksi

345 MPa

÷ 1



lorizontal Secti		Cross-sectional A	Areas		d _{ref}		l _{xx}		Qty:
	Front Plate	$A_{fp} = L_{OA} * t_f = \int_{-\infty}^{\infty}$	35.46	]in²	7.80	in	0.46	]in⁴	1
	Back Plate	A _{bp} = L _{OA} * t _b ≈	35.46	in²	0.20	in	0.46	in ⁴	1
	Side Plates	$A_{sp} = D * t_s =$	3.40	lin²	4.00	in	14.75	in ⁴	2
	Internals	A _l =	2.84	]in²	4.00	in	12.32	_lin⁴	5
leutral Axis:	N _A :	= ΣA * d _{ref} / ΣA =	4.00	in	(From Back	Plate)			
leutral Axis Prop	perties					0	t too id from	nontral ovi	~
				About the Neutral	<b>٦</b>	dNAf =	ent centroid from 3.80		5
	Front Plate		$I_{XX} + Ad^2 \approx$	5.13E+02	in ⁴		3.80		
	Back Plate		$I_{XX} + Ad^2 =$	5.13E+02	lin⁴ T.∡	dNAb =		o in	
	Side Plates	I _{NAS} =	$I_{XX} + Ad^2 =$	2.95E+01	lin ⁴	dNAS =			
	Internals	_{nai} =   _{natot} =	$I_{XX} + Ad^2 =$ $\Sigma I_{NA} =$	6.16E+01 1.12E+03	_in⁴ in⁴	dNAi =		0 in	
Aax Distance fro	om Neutral Axis:	C =	4.00	in					
Shear Area:		A _{shear} =	20.16	lin²					
lorizontal Sectio	on Stresses:				7				
	Bending Stres	38	$\sigma_v = M^c / I =$	20.79	) ksi				
	•.								
	Shear Stress		$\tau_v = V / A =$	13.20	3 ksi				
	Shear Stress		τ _v = ^v / _A =	13.26	3 ksi				
Vertical Section	Shear Stress	Crc	$\tau_v = \sqrt{\Lambda} =$		J		_{xx}		Qty:
Vertical Section	Shear Stress				3 ksi C _g 7.80	in	l _{xx} 0.50	jin⁴	Qty:
/ertical Section	Shear Stress	$A_{fp} = L_{OA} * t_f = $	oss-sectional A	Areas	Cg	in in		in ⁴	
/ertical Section	Shear Stress Properties: Front Plate		oss-sectional A 38.61	Areas ]in²			0.50 0.50 14.75	lin⁴ in⁴	1 1 2
Vertical Section	Shear Stress I Properties: Front Plate Back Plate	$A_{fp} = L_{OA} * t_f = \begin{bmatrix} \\ A_{bp} = L_{OA} * t_b \end{bmatrix}$	oss-sectional / 38.61 38.61	Areas In² In²	C _g 7.80 0.20	in	0.50 0.50	in ⁴	1
	Shear Stress Properties: Front Plate Back Plate Side Plates	$A_{fp} = L_{OA} * t_f = \begin{bmatrix} A_{bp} = L_{OA} * t_b = \\ A_{bp} = L_{OA} * t_b = \\ A_{sp} = D * t_s = \\ A_{l} = \end{bmatrix}$	0985-sectional / 38.61 38.61 3.40 2.84	Areas in ² in ² in ² in ²	C _g 7.80 0.20 4.00	in in	0.50 0.50 14.75 12.32	lin⁴ in⁴	1 1 2
Veutral Axis:	Shear Stress Properties: Front Plate Back Plate Side Plates Internals N _A	$A_{fp} = L_{OA} * t_{f} = \begin{bmatrix} A_{bp} = L_{OA} * t_{b} = \\ A_{bp} = L_{OA} * t_{b} = \end{bmatrix}$ $A_{sp} = D * t_{s} = \begin{bmatrix} A_{bp} = D * t_{b} = \\ A_{sp} = D * t_{b} = \end{bmatrix}$ $A_{l} = \begin{bmatrix} a_{bp} = b_{b} \\ a_{bp} = b_{b} \end{bmatrix}$	oss-sectional A 38.61 38.61 3.40 2.84 / ΣΑ =	Areas in ² in ² in ² in ² 4.00	C _g 7.80 0.20 4.00 4.00	in in in (From Back	0.50 0.50 14.75 12.32 (Plate)	in⁴ in⁴ in⁴	1 1 2 4
Veutral Axis:	Shear Stress Properties: Front Plate Back Plate Side Plates Internals N _A perties	$A_{fp} = L_{OA} * t_{f} = \begin{bmatrix} A_{bp} = L_{OA} * t_{b} = \\ A_{bp} = L_{OA} * t_{b} = \end{bmatrix}$ $A_{sp} = D * t_{s} = \begin{bmatrix} A_{l} = \\ A_{l} = \end{bmatrix}$ $A_{l} = \begin{bmatrix} \Sigma A * C_{G} \end{bmatrix}$	2.84 38.61 38.61 3.40 2.84 / ΣΑ =	Areas in ² in ² in ² in ² 4.00 About the Neutral	C _g 7.80 0.20 4.00 4.00 0 in	in in in (From Back	0.50 0.50 14.75 12.32 ( Plate)	in⁴ in⁴ in⁴	1 1 2 4
Veutral Axis:	Shear Stress Properties: Front Plate Back Plate Side Plates Internals N _A perties Front Plate	$\begin{array}{l} A_{tp} = L_{OA} * t_{f} = \begin{bmatrix} \\ A_{bp} = L_{OA} * t_{b} = \\ \\ A_{sp} = D * t_{s} = \\ \\ A_{l} = \end{bmatrix}$ $\begin{array}{l} \Rightarrow \qquad $	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ / $\Sigma A =$ nent of Inertia $I_{XX} + Ad^2 =$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02	C _g 7.80 0.20 4.00 4.00 0] in	in in (From Back Compon dNAf =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80	in⁴ in⁴ in⁴ n neutral ax 3 in	1 1 2 4
Neutral Axis:	Shear Stress Properties: Front Plate Back Plate Side Plates Internals Na perties Front Plate Back Plate	$\begin{array}{l} A_{fp} = L_{OA} * t_{f} = \begin{bmatrix} \\ A_{bp} = L_{OA} * t_{b} = \\ \\ A_{sp} = D * t_{s} = \\ \\ A_{I} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{38.61}{38.61}$ $\frac{34.0}{2.84}$ $/ \Sigma A =$ $\lim_{XX} + Ad^2 =$ $\lim_{XX} + Ad^2 =$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02	C _g 7.80 0.20 4.00 4.00 0 in	in in (From Back Compon dNAf = dNAb =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ n neutral ax 3 in 3 in	1 1 2 4
Neutral Axis:	Shear Stress	$\begin{array}{l} A_{tp} = L_{OA} * t_{f} = \\ A_{tp} = L_{OA} * t_{b} = \\ A_{tp} = L_{OA} * t_{b} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp$	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ / $\Sigma A =$ nent of Inertia $I_{XX} + Ad^2 =$ $I_{XX} + Ad^2 =$ $I_{XX} + Ad^2 =$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02 2.95E+01	C _g 7.80 0.20 4.00 4.00 0 in I Axis in ⁴ in ⁴	in in (From Back Compon dNAf = dNAb = dNAS =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ in⁴ in⁴ 3 in 3 in 3 in 0 in	1 1 2 4
Veutral Axis:	Shear Stress Properties: Front Plate Back Plate Side Plates Internals Na perties Front Plate Back Plate	$\begin{array}{l} A_{tp} = L_{OA} * t_{f} = \\ A_{bp} = L_{OA} * t_{b} = \\ A_{sp} = D * t_{s} = \\ A_{l} = \\ \end{array}$	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ / $\Sigma A =$ nent of Inertia $I_{XX} + Ad^2 =$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02 2.95E+01 4.93E+01	$ \begin{array}{c} C_{g} \\ 7.80 \\ 0.20 \\ 4.00 \\ 4.00 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	in in (From Back Compon dNAf = dNAb =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ n neutral ax 3 in 3 in	1 1 2 4
Neutral Axis:	Shear Stress	$\begin{array}{l} A_{tp} = L_{OA} * t_{f} = \\ A_{tp} = L_{OA} * t_{b} = \\ A_{tp} = L_{OA} * t_{b} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ A_{tp} = \\ \end{array}$ $\begin{array}{l} A_{tp} = \\ A_{tp$	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ / $\Sigma A =$ nent of Inertia $I_{XX} + Ad^2 =$ $I_{XX} + Ad^2 =$ $I_{XX} + Ad^2 =$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02 2.95E+01	C _g 7.80 0.20 4.00 4.00 0 in I Axis in ⁴ in ⁴	in in (From Back Compon dNAf = dNAb = dNAS =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ in⁴ in⁴ 3 in 3 in 3 in 0 in	1 1 2 4
Neutral Axis: Neutral Axis Pro	Shear Stress	$\begin{array}{l} A_{ip} = L_{OA} * t_{f} = \begin{bmatrix} \\ A_{bp} = L_{OA} * t_{b} = \\ \\ A_{sp} = D * t_{s} = \\ \\ A_{i} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ $/ \Sigma A =$ hent of Inertia $ _{XX} + Ad^2 =$ $ _{XX} + Ad^2$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02 2.95E+01 4.93E+01 1.20E+03 in	$ \begin{array}{c} C_{g} \\ 7.80 \\ 0.20 \\ 4.00 \\ 4.00 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	in in (From Back Compon dNAf = dNAb = dNAS =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ in⁴ in⁴ 3 in 3 in 3 in 0 in	1 1 2 4
leutral Axis: leutral Axis Pro	Shear Stress	$\begin{array}{l} A_{fp} = L_{OA} * t_{f} = \begin{bmatrix} A_{tp} = L_{OA} * t_{b} = \\ A_{tp} = L_{OA} * t_{b} = \begin{bmatrix} A_{tp} = \\ A_{tp} = \end{bmatrix} \end{bmatrix}$ $\begin{array}{l} = & \Sigma A * C_{G} \end{bmatrix}$ $\begin{array}{l} = & \Sigma A * C_{G} \end{bmatrix}$ $\begin{array}{l} Mon \\ I_{NAF} = \\ I_{NATOT} = \end{array}$	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ $/ \Sigma A =$ hent of Inertia $ _{XX} + Ad^2 =$ $ _{XX} + Ad^2 =$ $\sum_{NA} =$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02 2.95E+01 4.93E+01 1.20E+03	$ \begin{array}{c} C_{g} \\ 7.80 \\ 0.20 \\ 4.00 \\ 4.00 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	in in (From Back Compon dNAf = dNAb = dNAS =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ in⁴ in⁴ 3 in 3 in 3 in 0 in	1 1 2 4
Veutral Axis: Veutral Axis Pro Vex Distance fro Shea	Shear Stress	$\begin{array}{l} A_{fp} = L_{OA} * t_{f} = \\ A_{bp} = L_{OA} * t_{b} = \\ A_{sp} = D * t_{s} = \\ A_{l} = \\ \end{array}$ $\begin{array}{l} A_{l} = \\ A_{l} = \\ \end{array}$ $\begin{array}{l} \sum A * C_{G} \\ Mon \\ I_{NAF} = $	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ / $\Sigma A =$ ment of Inertia $\frac{1}{XX} + Ad^{2} =$ $\frac{1}{X} + Ad^{2} =$ $\frac{1}{X$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02 2.95E+01 4.93E+01 1.20E+03 in in ²	$ \begin{array}{c} C_{g} \\ 7.80 \\ 0.20 \\ 4.00 \\ 4.00 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	in in (From Back Compon dNAf = dNAb = dNAS =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ in⁴ in⁴ 3 in 3 in 3 in 0 in	1 1 2 4
	Shear Stress	$A_{tp} = L_{OA} * t_{f} = \begin{bmatrix} A_{tp} = L_{OA} * t_{f} = \\ A_{tp} = L_{OA} * t_{b} = \\ A_{tp} = D * t_{s} = \\ A_{t} = \begin{bmatrix} \\ A_{tp} \end{bmatrix} \end{bmatrix}$ $= \Sigma A * C_{G}$ Mon $I_{NAF} = \\ I_{NAB} = \\ I_{NAB} = \\ I_{NAB} = \\ I_{NAI} $	$\frac{38.61}{38.61}$ $\frac{38.61}{3.40}$ $2.84$ $/ \Sigma A =$ hent of Inertia $ _{XX} + Ad^2 =$ $ _{XX} + Ad^2$	Areas in ² in ² in ² in ² 4.00 About the Neutral 5.59E+02 5.59E+02 2.95E+01 4.93E+01 1.20E+03 in in ²	$ \begin{array}{c} C_{g} \\ 7.80 \\ 0.20 \\ 4.00 \\ 4.00 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	in in (From Back Compon dNAf = dNAb = dNAS =	0.50 0.50 14.75 12.32 ( Plate) nent centroid from 3.80 3.80	in⁴ in⁴ in⁴ in⁴ in⁴ 3 in 3 in 3 in 0 in	1 1 2 4



### **Panel Stress Check** Total Stresses: 21.50 ksi **Bending Stress** σ= ksi Shear Stress τ= 9.21 Allowable Factors: $\Omega_{\rm B} =$ 0.6 Bending: Ω_s = 0.4 Shear: Allowable Stresses: $F_Y * \Omega_B =$ 30.0 ksi Bending: $\sigma_{ALL}$ = ksi $F_Y * \Omega_B =$ 20.0 Shear: $T_{ALL} =$ Interaction Ratio: σ Bending: $\sigma_{ALL} \approx$ 0.72 $\tau / \tau_{ALL} =$ Shear: 0.46

ρ=

### Panel Weights

Density

0.284 lb / in³

ltem	Length	Width	Area	Thickness	Volume	Quantity	Weight	Weight
ral Components:	(in)	(in)	(in²)	(in)	(in³)		(lb)	(kg)
Front Plate	98.00	90.00	8820.00	0.39	3475.08	1.00	985.5	447.(
Back Plate	97.00	89.00	8633.00	0.39	3401.40	1.00	964.6	437.
Side Plates	97.00	7.21	699.56	0.47	330.19	2.00	187.3	85.
Top/Bottom	89.00	7.21	641.87	0.47	302.96	2.00	171.8	77.
Vertical 1	96.06		2.842		272.95	5.00	387.0	175.
Vertical 2	96.06		2.272		218.22	0.00	0.0	0.
Horizontal 1	88,06		2.842		250.21	4.00	283.8	128.
Horizontal 2	88.06		2.272		200.04	0.00	0.0	0.
				Str	uctural Compo	nent Subtotal:	2980.17	1351.
Padeyes:					-			
Tension 1			22.13	1.00	22.130	3.00	18.8	8
Tension 2			17.23	1.00	17.230	0.00	0.0	0.
Weight			19.04	1.00	19.040	2.00	10.8	4
Shear 2			22.50	1.25	28,125	0.00	0.0	0
Surge			54.96	1.75	96.180	0.00	0.0	0
Lifting			0.04	0.03	0.001	4.00	0.0	0
L		······································	•		Do	deye Subtotal:	29.63	13

### Miscellaneous Items:

Description:	Material:		
			0.00
			0.00
			0.00
			0.00
	Miscellaneous Items Subtotal:	0	0
	Total System Weight:	3009.80	1365,20

· 5

HORIZONTAL SECTION CRITERIA CHECK

# TRELLEBORG

### Project Information

â

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### Assumptions

1. Design according to AISC 14th ed. section F7

- 2. Webs must be relatively evenly spaced
- 3. No panel chamfers or wings included, only flat length of panel
- 4. Maximum web spacing will be used to determine effective flange width for all flanges

### **Horizontal Section Check**

Service Level Moment :	Max Horiz Moment	M =	484.1	kip-ft	
Load Factor :	USER INPUT	φ=	1.6		
Req'd flexural strength :	φM = M * φ	φM =	774.6	kip-ft	
		ſ		_	
Effective Panel Width :	W _F (Flat Width)	P _{w,eff} =	98.0	lin	
Front/Back Plate Thk :		t _r =	0.394	in	
Panel Thickness :		P _t =	8.0	in	
Flange Spacing :	$h = P_t - 2 * t_f$	h =	7.21	in	
Number of Webs :	$n_{w} = q_{h} + 2$	n _w =	6		Inc
Effective Flange Qty :	n _f = n _w - 1	n _f =	5		As
Web Height :	$h_w = P_t - 2 * t_f$	h _w =	7.21	in	
		_			
Flange yield strength :	USER INPUT	F _{yf} =	50.0	ksi	
Web yield strength :	USER INPUT	F _{yw} =	50.0	ksi	
Youngs modulus :	USER INPUT	E =	29000	ksi	
Average web spacing :	s _{w,avg} = P _{w,eff} / n _f	s _{w,avg} =	19.6	lin	
• • •			21.3	in	
Max web spacing :	USER INPUT	S _{w,max} =	0.394		
Thickness of webs :		t _w =		in	
Max web spacing - inside :	$b = s_{w,max} - t_w$	b =	20.91	in	

Including edges Assume 1 less than webs

### **Flange Classification Check**

b/t _f =	53.1	Table B4.1b, Case 17 limiting ra		
Upper limit of compact b/t ratio = $I_p$ =	27.0	<	53.1	Non-compact
Upper limit of non-compact b/t ratio = $I_r$ =	33.7	<	53.1	Slender

Compression flange classification = Slender: Use eq. (F7-1, F7-3 and F7-4)

HORIZONTAL SECTION CRITERIA CHECK



### Project Information

5 i

٠.

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

Web Classification Check				
h/t _w =	18.3		Table B4.1b,	Case 19 limiting ratio
Upper limit of compact h/t _w ratio = $l_p =$	58.3	>	18.3	Compact
Upper limit of non-compact h/t _w ratio = I _r =	137.3	>	18.3	Non-compact
Web classification =	Compact: W	, leb Local Bu	ckling does no	ot apply

### Compact flange classification code check

Cross sectional area : NA to comp./ten. centroid : Plastic modulus :		A = 94.27 in ² $d_{NA} = 3.36$ in Z = 316.47 in ³	
Nominal Flexural Strength :	$M_n = M_p = F_y Z =$	M _n = <u>15823.6</u> kip-in <u>1318.6</u> kip-ft	Eq. (F7-1)
Factor : Design Flexural Strength :	LRFD $\Phi_{b}M_{n} = \Phi_{b} * M_{n}$	$\Phi_{b} = \underbrace{0.90}{\Phi_{b}M_{n}} = \underbrace{1186.8}{\text{kip-ft}}$	> 774.6 kip-ft

HORIZONTAL SECTION CRITERIA CHECK



### Project Information

· 5

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### Assumptions

1. Design according to AISC 14th ed. section F7

- 2. Webs must be relatively evenly spaced
- 3. No panel chamfers or wings included, only flat width of panel
- 4. Maximum web spacing will be used to determine effective flange width for all flanges

### **Horizontal Section Check**

Service Level Moment :	Max Horiz Moment	M =	484.1	kip-ft	
Load Factor :	USER INPUT	φ =	1.6	_	
Req'd flexural strength :	φM = M * φ	φM =	774.6	kip-ft	
Effective Panel Width :	W _r (Flat Width)	P _{w,eff} =	90.0	in	
Front/Back Plate Thk :	ing (nacrinality	t _f =	0.394	in	
Panel Thickness :		P _t =	8.0	lin	
Flange Spacing :	h = P _t - 2 * t _f	h =	7.21	in	
Number of Webs :		n _w =	7		Inc
Effective Flange Qty:	n _f = n _w - 1	n _f =	6		Ass
Web Height :	$h_{w} = P_{t} - 2 * t_{f}$	h _w =	7.21	in	
Flange yield strength :	USER INPUT	F _{yf} ≠	50.0	ksi	
Web yield strength :	USER INPUT	F _{yw} ≓	50.0	ksi	
Youngs modulus :	USER INPUT	E =	29000	ksi	
Average web spacing :	Swarr = Pwort / Nr	s _{w,avg} =	15.0	in	
Max web spacing :		s _{w,max} =		 in	
Thickness of webs :		-w,inax t _w =		lin	
Max web spacing - inside :	b = s _{w,max} - t _w			in	
	•			_	

### Including edges Assume 1 less than webs

### **Flange Classification Check**

b/t _f =	37.1		Table B4.1b,	Case 17 limiting ratio
Upper limit of compact b/t ratio = $I_p$ =	27.0	<	37.1	Non-compact
Upper limit of non-compact b/t ratio = I _r =	33.7	<	37.1	Slender

Compression flange classification = Slender: Use eq. (F7-1, F7-3 and F7-4)

HORIZONTAL SECTION CRITERIA CHECK



### Project Information

L

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### Web Classification Check

h/t _w =	18.3		Table B4.1b,	Case 19 limiting ratio
Upper limit of compact h/t _w ratio = $I_p$ =	58.3	>	18.3	Compact
Upper limit of non-compact h/t _w ratio = $I_r$ =	137.3	>	18.3	Non-compact
Meh classification =	Compact: M	Iah Local Rug	kling dooe no	, f anniv

Web classification = Compact: Web Local Buckling does not apply

### Compact flange classification code check

Cross sectional area : NA to comp./ten. centroid : Plastic modulus :		A = 90.81 in ² $d_{NA} = 3.33$ in Z = 302.73 in ³	
Nominal Flexural Strength :	$M_n = M_p = F_y Z =$	M _n = <u>15136.7</u> kip-in <u>1261.4</u> kip-ft	Eq. (F7-1)
Factor : Design Flexural Strength :			> 774.6 kip-ft



UHMW

- 1

Project Information

Maritime Project Number: 61537 Maritime Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

Hardware Qty - Width:  $Q_{FA} = (W_{fp} - 2 * D_e) / S_{max} + 1$ 

Hardware Qty - Length:  $Q_{FD} = (L_{fp} - 2 * D_e) / S_{max} + 1$ 

Hardware per Pad: Q_{HF} = Q_{FA} * Q_{FD}

Hardware per Panel: Q_F = N_{FW} * N_{FL} * Q_{HF}

### **UHMW Characteristics**

Material Class: Color: Supplied From: UHMW Density: δ =	Virgin Green Foreign 58.01 lb/ft ³	Thickness: Thickness under nut: Edge Chamfers: Total Weight:	1.25 0.50 0.75 362.27	in in in : ]Ib	x 45 °
Hardware Information		······································			
Fastener Type: Fastener Size: Material:	Weld Stud 0.625 in 316 Stainless Steel	Edge Distance: Max Spacing: Total Qty:	2.38 18.00 81	in in ]	
UHMW Layout					
Front Face: Pads Across Width: Pads Across Length:	User Input User Input	N _{FW} = N _{FL} =	3 3		
Flat Width: Flat Length: Pad width [†] : Pad length [†] :	Panel adjusted width Panel adjusted length $W_{fp} = (W_F - N_{FW+1}^* 0.25) / N_{FW}$ $L_{fp} = (L_F - N_{FL+1}^* 0.25) / N_{FL}$	W _F = L _F = Wfp = Lfp =	90.0 98.0 29.67 32.33	in in in in	
Volume per pad: Weight per pad: Front Face Pad Quantity: Total UHMW Weight:	$W_{Fp} = V_{Fp} \star \delta$	V _{Fp} = W _{Fp} = N _F = W _F =	1199.0 40.3 9.0 362.27	lin ^a =	6.94E-01 ft ³ †Takes into account gaps on edges and between pads

Q_{FA} =

Q_{FD}=

Q_{HF} =

Q_F =

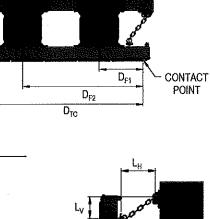
3 3

9

81

### **TENSION CHAINS**

### Project Information


Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### **TENSION CHAIN 1:**

					Note: Imag
Loading	Scenario: Horizor	ntal			
	Chain Qty:	n=	1		
	Fenders Per Row:	N≓	1		
Chain System Dim	onsional Lavout				L _{HS}
onani System Din	-				
	Horiz Standoff:	L _{HS} =	57	in	
	Lateral Offset:	L _{LO} =	0	in	Lio
	Vertical Offset:	L _{vo} =	0	in	
					D ₁

Note: Images may not reflect actual system

TRELLEBORG



### Panel System Layout:

Contact Point to First Fender Row:	D _{F1} =	70	in
Contact Point to Second Fender Row:	D _{F2} =	0	in
Contact Point to Tension Chain Set:	D _{TC} =	89.625	in

### System Dynamics:

Fender Row 1 Deflection:	USER INPUT	δ ₁ =	10	%
Fender 1 Reaction % at $\delta_1$ :	SEE CATALOG	R _{F1} =	53	]%
Fender Row 2 Deflection:	$\delta_2 = \delta_1 * (D_{TC} - D_{F2}) / (D_{TC} - D_{F1})$	δ2 =	0	]%
Fender 1 Reaction at $\delta_2$ :	SEE CATALOG	R _{F2} =	0	%
Panel Tilt Angle:	Φ = tan ⁻¹ ((H * δ ₁ ) / D _{F1} )	ф=	16.2	•
Angular Reduction Factor:	USER INPUT	Ľ	90	ี%

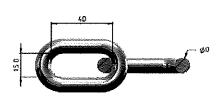
# 

### **Tension Chain Definitions**

 $\begin{array}{ll} \mbox{Calculated Chain Length:} & L_{TC} = \sqrt{(L_{HS}^2 + L_{LO}^2 + L_{VO}^2)} \\ \mbox{Normal Reaction Per Chain:} & T_N = R * N * (D_{F1} + D_{F2}) / (D_{TC} * Chain Load:) \\ & T = T_N * L_{TC} / L_{HS} \end{array}$ 

L _{TC} =	4.75	ft
T _N =	61.6	kips
T =	61.6	kips

### **TENSION CHAINS**


۶

Ϊ,

### Project Information

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### **Tension Chain 1 System Components**



Required FOS:	2	
<u>Chains</u>		
Link Type:	Open	
Link Size:	32	mm
Grade:	3	

1.125 in

in

in

in

in

in

1.81

1.25

1.875

1.75

3.13

**Shackles** 

**Dogbone Shackles** 

Shackle Size: d =

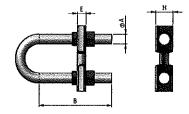
Shackle Pin: b =

Shackle Size: A =

Crossbar Width: H =

Crossbar Thickness: E =

Shackle Throat: a =


	Breaking Load:
nm	FOS on Breaking:

Breaking Load:	125,7	kips

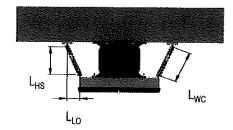
167.62 kips 2.7

v		
FOS on Breaking:	2.0	
Chain to Shackle:	YES	

Breaking Load:	147.7	kips
FOS on Breaking:	2.4	1
Chain to Dogbone:	YES	-



TRELLEBORG




### Project Information

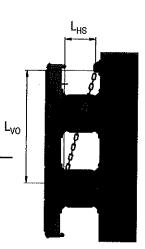
Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### Weight Chain Setup:

Loading Scenario:	Ship Roll		
	Chain Qty	n≃	1
Number of Fe	nders in System	N=	2
UHMW Coeff	icient of Friction	μ=	0.20
Fender	Shear Capacity	$\tau_{\rm cap} =$	8.0

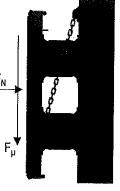


ft


### Chain System Dimensional Layout:

Horiz Standoff	L _{HS} =	55.00	in	
Lateral Offset	L _{LO} =	0.00	ín	
Vertical Offset	L _{vo} =	98.00	in	
Calculated Chain Length	L _{wc} =	112.38	in ≓	9.36

%


### System Dynamics

Buckling Deflection:	Point of Max Reaction	δ _B =	30	%
Change in Fender Height:	ΔH = δ _B * H	ΔH =	17.1	in
Fender Vertical Shearing:	$\tau_v = \sqrt{(L_{WC}^2 - (L_{HS} - \Delta H)^2 - L_{LO})} - L_{VO}$	τ, =	7.8	in
Fender Normal Load:	F _N = N * R	F _N =	374.0	kips



### System Loading

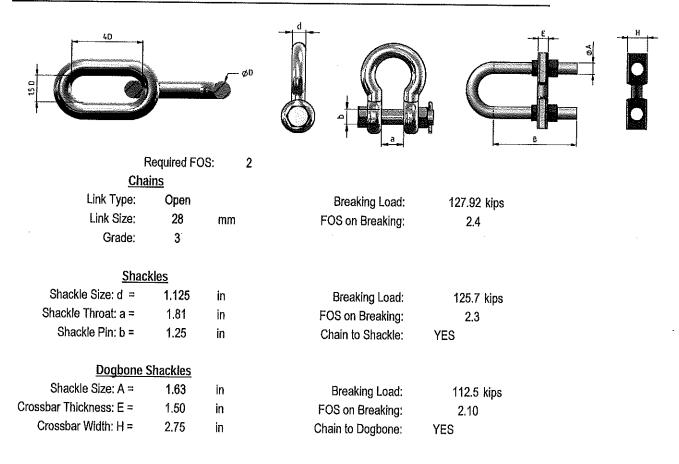
1/2 Fender Weight:	W _{half} = ½ * N * W	W _{half} =	2.12	kips	
Panel Weight:	Calculated weight + 5%	W _P =	3.16	kips	
UHMW Weight:	Calculated Weight	W _{UHMW} =	0.36	kips	_
Total Weight:	$W_{tot} = W_{half} + W_P + W_{UHMW}$	W _{tot} =	5.64	kips	F
Frictional Force:	F _μ = F _N * μ	F ₀ =	74.80	kips	
Resisted By Fender(s):	$F_{\tau} = \tau_{cap} * N * R$	F _τ =	29.92	kips	
Vert Load Per Chain:	$F_y = W_{tot} + F_{\mu} - F_{\tau}$	F _y =	50.52	kips	
Chain Load:	$F_{WC} = F_{y} * L_{WC} / (L_{VO} + \tau_{v})$	F _{wc} =	53.66	kips	





ί,

. 5


### WEIGHT CHAINS

• 3

### Project Information

Project Number: 61537 Project Name: Port of Fernandina Dock Fender Author: Kurt Trahan Comments:

### **Chain System Components**



TRELLEBORG